
International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 1
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

A Study on Dependency Optimization using
Machine-Learning Approach for Test Case

Prioritization
Sathya C, Karthika C

Abstract—The main goal of this paper is Test Case Prioritization where the process is to order test cases. This ordering of test case will
give and increased rate in fault detection. Test Case Prioritization will improve the fault fixing process anmd thus leads a way to early
delivery of the software. Due to the functional dependencies between the requirements the cse of executing the test case in any order goes
false. In this paper, we present different techniques that provides us information about the various ways of prioritization the test case using
the dependencies between them. The dependencies of the test case is main based on the interaction between the requirements or even
between the various modules and funcitons of the whole system. This test case ordering based on the functional dependencies is likely to
increase the fault detection earlier than other fault detection systems. This is known through the empirical evaluations on six systems that
were built towards the industry. We also proposed a new system which is a machine learning techn ique. This is known through the
empirical evaluations on six systems that were built towards the industry. We also proposed a new system which is a machine learning
technique. Here Case-Based Paradigm is indulged with Analytical Hierarchy Processing which proves itself better than other techniques
proposed to date.

Index Terms— Analytical Hierarchy Processing, Case-Based ranking, Dependency, Fault Detection, Prioritization, Test Automation, Test
Case .

—————————— ——————————

1 INTRODUCTION
Equirements prioritization plays a crucial role in software
development, and in particular it allows for planning
software releases, combining strategies a complex mul-

ticriteria decision making process. The indentification of re-
quirement attributes in the second step is performed in a way
to define uni variate ranking functions on the requirements
set. For example, with reference to the goal of reducing devel-
opment costs and the choice of “development cost” as a target
ranking criterion, requirement attriputes such as the estimate
number of “lines of code” or of “components” are suitable.
The third step, namely the acquisition of attribute values over
the set of requirements, usually represents the most expensive
task in the prioritization process since it rests on the availabil-
ity of expert knowledge or on the elicitation of evaluations
from stakeholder. Since a target critetion might be encoded by
manifold attributes and each attribute induces a ranking of the
requirement set, the fourth step is concerned with the compo-
sition of the different attribute based rankings into a global
ordering corresponding to the target criterion. This composi-
tion is usually defined in terms of a weighted aggregation
schema. The assumption underlying the analysed approaches
is that the ranking criteria, the requirement attributes, and the
wat to compose them in case of multi criteria ranking can be
defined independently of the nature of the current set of re-
quirements prioritization probem which prevents exploiting
available knowledge on the project’s application domain. In
contrast, an ex-post perespective will enable the exploitation
of this knowledge through a prioritization process that is built
on the actual set of requirements under evaluation and will
lead to a different realization of steps 2 to 4. Namely, project
stakeholders are asked to perform a pairwise comparision of
the current requirements, allowing them to decide which re-
quirementsm is to be given a higher rank between two alterna-

tives without the need to identify a specific requirement at-
tribute to encode the evaluation criterion adopted by the
stakeholder.

So, for incstance. The users of an e-voting system may be

asked to decide of the requirements”Graphical layout of the
voting form” and “Getting audio feedback during the voting
procedure” is more important. The difference between ex-ante
and ex-post approaches can be summarized as follows. While in
the ex-ante perspective the target ariterion is chosen in advance,
in expost approaches project stakeholders are required to eval-
uate pairs of requirements along an underlying target criterion.
Consequently, requirements ranking is not computed from the
values of requirements attributes, but it is derived from the pri-
ority relations that are elicited directly from stakeholders, who
may take into account implicit information that might not have
been preliminarily encoded as requirement attributes. The
composition of rankings in case of multi-stake holders prioriti-
zation is provided as instances of pairwise realtions and not as
the result of the application of an analytical composition sche-
ma. An interesting advantage of eliciting input reagarding val-
ues rather than absolute values for attributes is that the noise on
the input is recognized to be lower.

2 OBJECTIVE OF THE STUDY
 The objective of the study is to propose a system which pro-
vides an order for the execution of test case and test suites
based on their dependency structures. These dependency
structure form directed acyclic graphs. The techniques for the
prioritization is based on the Machine-Learning techniques
which is based on the Analytical Hierarchy Process. This Ana-
lytical Hierarchy Process is further based on Case-Based Para-

R IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 2
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

digm. This proposed system should also help in increasing the
detection of fault.

2.1 Principles of Software Testing
Presence of defects: Testing is the process of finding errors.
But we have no proof to tell that the software being tested is
fully of errors. What ever and how much testing is done on the
software there may be still errors in the software which may or
even may not be known to the people using it and also the
developers.

Exhaustive testing is impossible: Testing the whole process
of the software is very difficult. The number of test case is
based on the requirments. If suppose there are 20 test suites
and each have seven test cases then executing seven to the
power twenty is very very tedious process, hence exhaustive
testing cannot be done. We test only the important portions of
the software.

Early Testing: Early testing deals with the process of testing
the software from the beginning of the life cycle process,
means the requirement ar also tested.

Defect clustering: Defects are all based on certain type of
modules. There re many types of test cases during the repeat-
ing of the same modules. This will enable the testing process
to find more errors than usually executing the same test cases
without any modification.

Pesticide paradox: Pesticide Paradox testing is the process of
creating new types of test cases during the reapeating of the
same modules. This will enable the testing process to fine
more errors than usually executing the same test cases without
any modification.

Absence-of-errors fallacy: The Testing of a software is done
to only a software which will be used by the user. Even after
knowning that the software will not satisfy the customer, test
the software by wasting time and errors should be avoided.

2.2 Test Case
Test cases involve the set of steps, conditions and inputs
which can be used while performing the testing tasks. The
main intent of this activity is to ensure whether the Software
Passes or Fails in terms of its functionality and other aspects.
There are many types of test cases like: functional, negative,
error, logical test cases, physical test cases, UI test cases etc.
Furthermore test cases are written to keep track of testing cov-

erage of software. Generally, there is no formal template
which is used during the test case writing. However, follow-

ing are the main components which are always available and
included in every test case: Test case ID, Product Module,
Product Version, Revision history, Purpose, Assumptions, Pre-
conditions, steps, Expected outcome and actual outcome.

2.3 Traceability Matrix
Traceability Matrix(also known as Requirement Traceabil-

ity Matrix-RTM) is a table which is used to trace the require-
ments during the Software development life cycle. It can be
used for forward tracing(i.e. Requirements to Design or cod-
ing) or backward(i.e. from Coding to Requirements). There are
many user defined templates for RTM. Each requirement in
the RTM document is linked with its associated test case, so
that testing can be done as per the mentioned requirements.
Further more, Bug ID is also included and linked with its as-
sociated requirements and test case. The main goals for this
matrix are: To make sure Software is developed as per the
mentioned requirements, To help in finding the root cause of
any bug and to help in tracing the developed documents dur-
ing different phases of SDLC.

2.4 Test Case Prioritizaiton
The priortizaiton of test case is the most important aspect in

reducing the time needed for testing, effective use of resources
and also early finding of faults or defects. The test case priori-
tization is the process of organizing the test cases in a order
that test cases of higher priority are executed first. This priori-
ty is based on certain criteria based on the method of priori-
tizaiton.

2.5 Dependencies
Functional Dependency

Scenarios are defined as the sequence of interactions be-
tween two systems or more. The order in which these interac-
tions are being processed is the order in which the dependen-
cies are being found. Functional dependency is where some
instructions should definitely be executed before the other
instructions, just because the latter is dependent on the one
which was executed before it.

Open and Closed Dependencies
 A Closed Dependencies is one in which the dependable test
case should be executed first and the dependent test case
should be execute after it but not necessarily executed imme-
diately after it. An Open Dependency is one in which the de-
pendent test case should be immediately executed after the
test case on which it is depended.

Dependent and Independent test cases
 Dependent test cases are those who are dependent on each
other which means they have interactions between each other.
A independent test case in one which the test case in not de-
pendent on any other test cases, hence therefore they do not
have interactions with other modules in the system.

————————————————
• Sathya C is currently pursuing masters degree program in Software Engi-

neering in CIET, India, PH-7402107222. E-
mail:c.sathyachandran92@gmail.com

• Karthika C name is currently working as Assistant Professor in Electron-
ics and Communication Engineering at Dr. NGP Institute of Technology,
India, PH-9524761426. E-mail:ck.ckarthika@mail.com

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 3
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

3 TECHNIQUES FOR TEST SUITE PRIORITIZATION
As referred in the paper[2] by D.Jeffrey and N.Gupta, the de-
tection of errors in the software is done by occurring and reoc-
curing of software testing during the software development
life cycle. The size of the test cases is dependeable on the size
of the software. Due to various factors like time constraint and
resource constraint we are prioritizing the test cases to know
test case has the most importance to be surely tested. The
number of test cases can be avoided by the number of re-
quirements given by the customer. This paper produces an
approach which is based on the output of the software. Here
the output of the system is divided into various divisions,
these divisons are called as slices. The number of requirements
for the output slice determines the priority of the test cases.
This approach has the ability high rate of fault detection.

The paper by D.Kundu, M.Sharma, D.Samantha and R.Mail,
proposes a method which integrates both design, develop-
ment and testing process in the software development life cy-
cle. In the design phase, interaction diagrams are being devel-
oped from the use case matrix. These interactions diagram
produces a list of sceanrios. From these scenarios the depend-
encies are being calculated. The module having the large
number of sceanrios will be given higher priority and will be
tested first. But this does not prove so good because the mod-
ule with the large number of scenarios does not logically
prove its importance. This approach is employed to improve
the productivity of the testing process through scenarios prior-
itization.

Z. Li, M.Harman and R.Hierons proposed a method in their
paper a search algorithm for regression test case prioritization.
As discussed before due to insufficient resources for regres-
sion testing- regression testing is the process of executing the
test cases repeatedly due to the change made in the module-
prioritization of test cases is needed, which improves the effec-
tiveness of regression testing. Older researches of these testing
was done on greedy algorithms, but these algorithms produce
sub-optimal results sicne the results gives only one minina.
They used the algorithms like metaheuristic and evolutionary
search algorithms to avoid the above problems. The results of
this paper shows that genetic algorithm performs well for
such purposes.

4 IMPORTANCE OF THE SURVEY
Through evaluation systematic reviews and devlop under-
standing about systematic reviews we

• Investigate to what extent systematic review is bene-
ficial as a priorization mechanism for the software
engineering community.

• Investigate benefits form of sort of systematic reviews
have been conducted in software engineering in gen-
eral and in are of requirements prioritization in par-
ticular.

• Investigation benefits from the art requirements priro-
tization techniques and studies relevant to the differ-
ent techniques.

• Conduct a systematic review of the requirements pri-
oritization area to see what evidence regarding dif-
ferent prioritization techniques exist.

• Develop a research framework based on the systemat-
ic review to align research within requirements prior-
itization area and facilitate systematic reviews in fu-
ture.

5 REQUIREMENTS PRIORITIZATION
Requirements prirotization should also consider business is-
sues and implementation issues. Business issues might in-
volve financial benefits for the developing organization, mar-
ket trends and focus, competitors, regulations whereas im-
plementation issues mostly involve implementation cost, cost
if not implemented, available resources etc. Another important
aspect to be considered while prioritizing requirements is the
customer perspective along with the perspectives of develop-
ers and financial personals. Customers provide vital inforam-
tion about the user/customer value; developers are better
suited for the technical addition, all those perspectives can be
involved and combined that adds value to the project and that
have stake in the prject or product.

6 PRIORITIZATION TECHNIQUES USING CASE BASED
RANKING

Prioritization can be done with various different scales and
types. Below, few of the prioritization techniques are present-
ed. Some of the prioritization techniques assume that re-
quirements have a priority associated with them while others
group them in priority level.

6.1 Architecture Diagram

6.2 Analytical Hierarchy Processing
Analytical Hierarchy Process(AHP) is a systematic statistical
technique based on relative assessment that has been used to pri-
oritize software requirements in software community. The AHP

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 4
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

is a powerful and flexible decision making process to help people
set priorities and make te best decision when both qualitative and
quantative aspects of a decision need to be considered. By reduc-
ing with complex decisions to a series of one-on-one com-
parisions, AHP helps decisions makers arrive at the best decision.
With AHP, one can synthesize the results, which provide a cleasr
rational for choosing the candidate requirements. It is very com-
plex in terms of sophistication and fine in terms of granularity.
During the process, considering n requirements, n*(n-1)/2 com-
parisons are to be made to each hierarchy level. This is often seen
as a draw back in this process because with the increase number
of requirements, the number of comparisons increases with a
magnitude of O(n2). AHP can be used to prirotize requirements
on the basis of different aspects and there have been number of
studies which have reported the use of it in the industrial setting
and real projects as an efficient and more difficult to use. In an-
other study, AHP was reported more time consuming and diffi-
cult to use in certain situations considering aspects of cost and
value. Therefore there is a need for more experimentation and
industrial case studies to actually come toa final conclusion for its
effectiveness under different situations.

4 CONCLUSION
The Functional Prioritization method follows the case-based
paradigm for problem solving, according to which a solution
to a hew problem can be derived form(partial) examples of
previous solutions to similar problem. In the context of re-
quirements prioritization, these examples are elicited form
project stakeholders as pairwise preferences on samples of the
set of requirements to be prioritized, and used to compute an
approximated ranking for the whole set. The machine learning
technique exploited by the method has been presented, both
with the help of an untuitive example and be describing the
Rank Boost algorithm, which is implemented in the method.
The prioritization processs based on Functional Priorizaiton
has been presented. A discussion of the method performance,
which is defined in terms of tradeoffs between pregerence
elicitation effort and ranking accuracy and of its domain adap-
tively, has been given, with the support of a set of different
experimental measurements and of a case study. The experit-
mntal measures were taken by applying Functional Prioritizai-
ton to different prioritization problems, varying the number of
requirements, the number of elicited pairs, and the accuracy of
the computed ranking. Indicators for the statistical signifi-
cance of the measurements have been provided. Finally, the
Functional Prioritization method has been positioned with
respect to state-of-the art approaches, with particular reference
to the AHP method, which can also be considered an instance
of the case-based problem solving paradigm. Differently from
AHP, the Functional Prioritizaiton method enables a prioriti-
zation process, even over 100 requirements, thanks to the ex-
ploitations of machine learning techniques that induce re-
quirements ranking approximations from the acquired data.

ACKNOWLEDGMENT
The authors wish to thank the institution for their great sup-
port.

References
[1] J. Bach, “Useful Features of a Test Automation
System (Part iii),” Testing Techniques Newsletter, Oct.
1996.
[2] F. Basanieri, A. Bertolino, and E. Marchetti, “The
Cow_Suite Approach to Planning and Deriving Test
Suites in UML Projects,” Proc. Fifth Int’l Conf. Uni-
fied Modeling Language, pp. 275-303, 2002.
[3] S. Elbaum, A. Malishevsky, and G. Rothermel,
“Incorporating Varying Test Costs and Fault Severities
into Test Case Prioritization,” Proc. 23rd Int’l Conf.
Software Eng., pp. 329-338, 2001.
[4] S. Elbaum, A.G. Malishevsky, and G. Rothermel,
“Test Case Prioritization: A Family of Empirical Stud-
ies,” IEEE Trans. Software Eng., vol. 28, no. 2, pp.
159-182, Feb. 2002.
[5] R.W. Floyd, “Algorithm 97: Shortest Path,”
Comm. ACM, vol. 5, no. 6, p. 345, June 1962.
[6] D. Jeffrey and N. Gupta, “Experiments with Test
Case Prioritization Using Relevant Slices,” J. Systems
and Software, vol. 81, no. 2, pp. 196-221, 2008.
[7] B. Jiang, Z. Zhang, W. Chan, and T. Tse, “Adaptive
Random Test Case Prioritization,” Proc. IEEE/ACM Int’l Conf.
Automated Software Eng., pp. 233-244, 2009.
[8] J. Kim and D. Bae, “An Approach to Feature Based Model-
ling by Dependency Alignment for the Maintenance of the
Trustworthy System,” Proc. 28th Ann. Int’l Computer Software
and Applications Conf., pp. 416-423, 2004.
[9] R. Krishnamoorthi and S.A. Sahaaya Arul Mary, “Factor
Oriented Requirement Coverage Based System Test Case Pri-
oritization of New and Regression Test Cases,” Information
and Software Technology, vol. 51, no. 4, pp. 799-808, 2009.
[10] D. Kundu, M. Sarma, D. Samanta, and R. Mall, “System
Testing for Object-Oriented Systems with Test Case Prioritiza-
tion,” Software Testing, Verification, and Reliability, vol. 19,
no. 4, pp. 97- 333, 2009.
[11] K.S. Lew, T.S. Dillon, and K.E. Forward, “Software Com-
plexity and Its Impact on Software Reliability,” IEEE Trans.
Software Eng., vol. 14, no. 11, pp. 1645-1655, Nov. 1988.
[12] J. Li, “Prioritize Code for Testing to Improve Code Cover-
age of Complex Software,” Proc. 16th IEEE Int’l Symp. Soft-
ware Reliability Eng., pp. 75-84, 2005.
[13] J. Li, D. Weiss, and H. Yee, “Code-Coverage Guided Prior-
itized Test Generation,” J. Information and Software Technolo-
gy, vol. 48, no. 12, pp. 1187-1198, 2006.
[14] Z. Li, M. Harman, and R. Hierons, “Search Algorithms for
Regression Test Case Prioritization,” IEEE Trans. Software
Eng., vol. 33, no. 4, pp. 225-237, Apr. 2007.

IJSER

http://www.ijser.org/

	1 Introduction
	2 Objective Of The Study
	2.1 Principles of Software Testing
	2.2 Test Case
	2.3 Traceability Matrix
	2.4 Test Case Prioritizaiton
	2.5 Dependencies

	3 Techniques For Test Suite Prioritization
	4 Importance of the survey
	5 Requirements Prioritization
	6 Prioritization Techniques using Case Based Ranking
	6.1 Architecture Diagram
	6.2 Analytical Hierarchy Processing

	4 Conclusion
	Acknowledgment

